01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
SUM1(cons2(x, l)) -> +12(x, sum1(l))
SUM1(nil) -> 011(#)
+12(11(x), 11(y)) -> +12(x, y)
SUM1(cons2(x, l)) -> SUM1(l)
+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> 011(+2(+2(x, y), 11(#)))
PROD1(cons2(x, l)) -> *12(x, prod1(l))
PROD1(cons2(x, l)) -> PROD1(l)
*12(11(x), y) -> 011(*2(x, y))
*12(01(x), y) -> 011(*2(x, y))
*12(11(x), y) -> *12(x, y)
+12(01(x), 01(y)) -> 011(+2(x, y))
*12(01(x), y) -> *12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
*12(11(x), y) -> +12(01(*2(x, y)), y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
SUM1(cons2(x, l)) -> +12(x, sum1(l))
SUM1(nil) -> 011(#)
+12(11(x), 11(y)) -> +12(x, y)
SUM1(cons2(x, l)) -> SUM1(l)
+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> 011(+2(+2(x, y), 11(#)))
PROD1(cons2(x, l)) -> *12(x, prod1(l))
PROD1(cons2(x, l)) -> PROD1(l)
*12(11(x), y) -> 011(*2(x, y))
*12(01(x), y) -> 011(*2(x, y))
*12(11(x), y) -> *12(x, y)
+12(01(x), 01(y)) -> 011(+2(x, y))
*12(01(x), y) -> *12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
*12(11(x), y) -> +12(01(*2(x, y)), y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(01(x), 01(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
Used ordering: Polynomial interpretation [21]:
+12(11(x), 11(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
POL(#) = 0
POL(+2(x1, x2)) = 0
POL(+12(x1, x2)) = 2·x2
POL(01(x1)) = 2 + 2·x1
POL(11(x1)) = 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
+12(11(x), 11(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(11(x), 11(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
Used ordering: Polynomial interpretation [21]:
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
POL(#) = 0
POL(+2(x1, x2)) = 0
POL(+12(x1, x2)) = 2·x2
POL(01(x1)) = 0
POL(11(x1)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
POL(#) = 0
POL(+2(x1, x2)) = x1 + x2
POL(+12(x1, x2)) = 2·x1 + 2·x2
POL(01(x1)) = 2·x1
POL(11(x1)) = 2 + 2·x1
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
01(#) -> #
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(#, x) -> x
+2(01(x), 11(y)) -> 11(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
SUM1(cons2(x, l)) -> SUM1(l)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SUM1(cons2(x, l)) -> SUM1(l)
POL(SUM1(x1)) = 2·x1
POL(cons2(x1, x2)) = 1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
*12(11(x), y) -> *12(x, y)
*12(01(x), y) -> *12(x, y)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(01(x), y) -> *12(x, y)
Used ordering: Polynomial interpretation [21]:
*12(11(x), y) -> *12(x, y)
POL(*12(x1, x2)) = 2·x1
POL(01(x1)) = 2 + 2·x1
POL(11(x1)) = 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
*12(11(x), y) -> *12(x, y)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(11(x), y) -> *12(x, y)
POL(*12(x1, x2)) = 2·x1
POL(11(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
PROD1(cons2(x, l)) -> PROD1(l)
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROD1(cons2(x, l)) -> PROD1(l)
POL(PROD1(x1)) = 2·x1
POL(cons2(x1, x2)) = 1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
01(#) -> #
+2(x, #) -> x
+2(#, x) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(11(x), 11(y)) -> 01(+2(+2(x, y), 11(#)))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
sum1(nil) -> 01(#)
sum1(cons2(x, l)) -> +2(x, sum1(l))
prod1(nil) -> 11(#)
prod1(cons2(x, l)) -> *2(x, prod1(l))